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The dynamics of a coupled two-component nonequilibrium system is examined by means of continuum field
theory representing the corresponding master equation. Particles of speunis perform hopping processes
only when particles of different typB are present in their environment. Speci@s$s subject to diffusion-
limited reactions. If the density dB particles attains a finite asymptotic val(&ctive statg the A species
displays normal diffusion. On the other hand, if Beensity decays algebraicaliyt ~* at long timeginactive
statg, the effective attractivéA-B interaction is weakened. The combination Bfdecay and activateé
hopping processes gives rise to anomalous diffusion, with mean-square displatééme)?t)octl’“ for «
<1. Such algebraic subdiffusive behavior ensuesrir-order B annihilation reactionsn(B—J) with n
=3, andn=2 ford<2. The mean-square displacement of Ahgarticles grows only logarithmically with time
in the case oB pair annihilation 6=2) andd=2 dimensions. For radioacti#decay fi=1), theA particles
remain localized. If théA particles may hop spontaneously as well, or if additional random forces are present,
the A-B coupling becomes irrelevant, and conventional diffusion is recovered in the long-time limit.

PACS numbgs): 05.40-a, 05.20.Dd, 05.70.Ln, 82.20.Mj

. INTRODUCTION A nontrivial temporal behavior fopg(x,t) will result if

we submit theB species locally to diffusion-limited reactions

There has been considerable effort to elucidate the props,ch asth-order annihilatiomB— & (at the same or adja-
erties and conditions of anomalous diffusive behavior. AL, + |attice points or combined annihilation (=2) and

simple physical realization is given by diffusion on a fractal . .
lattice [1], where due to the increasing number of pathsspontaneous offspring producti@:(m+1)B [the B par-

within the lattice, the time for a diffusion process will be ticles then perform br_anchmg and annihilating random walks
prolongated. Also, diffusion in random media with quenchedBARW)]. Once the time dependence @i(t) has been de-
disorder may be anomalous. Depending on the distribution ofermined, we shall see that tiekinetics is in the long-time
barrier heightgor depths of traps one may observe normal limit to good approximation described on the basis of the
diffusive or subdiffusive behavior, respectively, if the avail- associated mean-field rate equation. WherBlspecies is in
able number of diffusive paths is reduced by the presence of, active state, i.epg(X,t—)=p:>0, with a basically
obstacle$2,3]. Here we discuss a quite different situation in ), .\, eneous distribution in space, thearticles will dis-
which diffusion is activated by the presence of particles or e . i e

ay normal diffusive behavior, with a diffusion constant

excitations that also propagate diffusively, but in the cours% o o” | h a situati has d ical disorder. but
of time decay. As a result the activated diffusion is rendered”A”Pg - ' SUch a situalion one has dynamical disorder, bu

anomalous because the number of available paths decreadB€€ is always afinite fraction of sites available for hopping.
with time. However, the resulting structure of diffusive pathsHowever, an inactive phase, or the BARW critical point, are
is not static, but evolves temporally. One may call this phe-described either by an exponential deggyx,t—)xe™,
nomenon dynamical fractality or dynamical disorder, de-in which case theA particles remain localized, or by a
pending on how the spatial distribution of excitations power-law decreaspB(i,tHoo)ocra with a characteristic
evolves in time. exponenta>0. The diminishing density oB particles re-
We model this scenario by starting from a two-componeniduces the induced mobility of th& species, and these com-
system consisting of distinct partjcle speci@saind B, with peting effects lead to subdiffusive behavi(onA(t)z)oct““
local time-dependent densitigg(x,t) and pg(X,t). An A for @<1. In the borderline case=1 one has merely loga-
particle is allowed to perform hopping processes betweepnic growth (Xa(t)2)=Int.
adjacent neighboring sites on a lattice, provided there are one Intuitively some of this behavior can be easily understood
or moreB particles present in its vicinity. To be more spe- j, he |imjt of vanishing diffusion of theB particles. We
cific, anA particle hops from a sitpto a neighboring poinit 54,y for multiple occupation, i.e., the site occupation num-

subject to the condition that this siteis already occupied o, can be any integer between zero and infinity. When the

V\r']'thl a plartlcle .0]; sgeme_ﬁ, anl;j .W'thla ratehpropofrftlonal to occupation number dB particles at a certain lattice point is
the localB particle density. Obviously, such an effective at- .\, erq that site is available for thespecies. In an inactive

tractive interaction strongly influences the diffusive mobility ¢i»i6 the number @& particles will be permanently reduced

of the A species: Their mean-square dispIacen(eig(t)?) by reactions leading to a decreasing density of available sites
will depend on the time evolution of the loc&# density  for the A species. This procedure can be viewed as an effec-
pe(X,t). tive “thinning out” of lattice sites that lead to subdiffusive
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behavior for theA particles reminiscent ofbut distinct t9 feen
the mathematically considerably more complex phenomenon Lr=An> (1—b/Mb). 2.3
of diffusion on a fractal lattice. '

Obviously, this operator describes the annihiliatiomgfar-
Il. MODEL ticles of typeB at a lattice sité provided such particles are
rfavailable; N, denotes the corresponding rate. Similarly,
rgPontaneous branching procesBes (m+1)B with rateo,
are described bj/19]

Here we present a more precise definition of our model i
terms of a master equation that we formulate in the standa
Fock-space formulatiofd—6], sometimes called the “quan-
tum Hamiltonian formalism™[7,8], particularly for particles
with hard-core repulsion. Physically, this interaction is usu- Lp=0m>, (bI™—1)blb;. (2.4
ally insignificant unless exclusion between different particle i
species or external driving forces need to be taken into ac- . .
count. This is intuitively clear for annihilating processes | °9€ther with Eq(2.1), L andLp represent the time evo-
where the particle density tends to zero at late tifigesl 2], lution operator for branching annihilating random walks
but remains true also in the absence of particle reacfibBls (BARW). . .
even in one dimension. In some models, however, e.g., the "€ complete dynamics is determined by=La+Lg
annihilation-fission modef14] or the pair contact process  Lr(*Lp), and may be encoded into a time-dependent
with diffusion[15,16, site occupation number constraints do  State vector” [4]
play a crucial role. Hence, usually the specific choice of a
model is_prescribed by the mathematical treatment used to |F(t)>=2 P(ﬁ,t)|ﬁ>_ (2.5
analyze it. In the present context where we shall employ n;
mean-field techniques and renormalization-group arguments .
it is more advantageous to consider particles without sitédere P(n,t) is the evolving probability distribution for the
exclusion(for recent reviews, see e.g. Refg,17)). unrestricted site occupation numbers {n;} for both A and

We consider a system consisting of two different types ofg 4 icles, andn) is a basic vector containing all possible
particles denoted aé and B. The time evolution can be entriesn,=0,1,2 . . . =, i.e., the eigenvalues of the second-

represented through an evolution operatgd—6]. The cor- o Jvised bosonic particle number operawmfa; andb/b;,
responding "’T‘””'? llation and cr-eatlon. operators are ertte_n agespectively. The statéd) represents the vacuum with no
3; (bj) anda; (by), where the index indicates a lattice point 1, ic|eq presenta;|0)=0=b;|0). The state vector obeys
in d space dimensions. For example, the normal hoppin he equation of motion
process of specieB from a sitej to its neighbori is de-
scribed by the evolution operatBr(b{b; —b{b;), and for the FHFY=L|F (1)), (2.6)
entire lattice therefore
or formally |F(t))=e"!|F(0)).
_ f_nih —h. The nonequilibrium operatdr corresponds to, and is ob-
Le D(iEj) (by = by) (b~ by, @ tained from the evolution operatar of the classical master
equation that can generally be written as
whereD is the hopping rate or diffusion constant.
An analogous expression would describe free diffusion of atP(ﬁ,t)= L’ p(ﬁ,t), (2.7

the A particles. Here, however, we examine the situation that
such a process is only allowed if there is at least 8e and the matrix elements &f andL’ are uniquely related to
particle present at site If no representative of speci&is  each other. The time-dependent average of an arbitrary
?va|lable|at§ that S'te’t aAfparttkl]cIte cannot move thertg. TTet physical quantityG(n) with the probability distribution
(';nrzj ivs-’r:jI)obr}b?F.)E'Elfﬁeo(r:o?rresp?)ngifgisosppl)singrgfc?(:égge\l/vilIo P(n,t) can_be cast into a “matrix element” form for the
occur pr(])vided ar particle is in fact present at sijeand at corresponding second-quantized oper&it)
least oneB particle occupies site Moreover, its rate is ac- . R
tually proportional to the number d8 particles present at (G(t)>=z P(n,t)G(n)=(¥|G|F(1)), (2.8
sitei. For the full system we obtain N

5 with the projection statéW|=(0|expZ;(a+b;). Using the
La= DZ (a;r—ajT)(ajbini —aibJ-Tbj). (2.2 relation(¥|L=0, the evolution equation for an arbitrary op-
() eratorG becomes

Here,D denotes the induced transition rate for the dynamical (G)=(V|[G,L]|F(t)). (2.9
process of specieA.

In contrast to specied, theB particles are subject to local All the dynamical equations governing the classical problem
reactions. A decreasing number Bfparticles will lead to a are thus determined by the commutation rules of the under-
slowing down for the motion of’s through the lattice. For lying operators and the structure of the evolution operator
nth-order annihilation reactionsB—J, the nonequilibrium  In our case the dynamics of the model is given by induced
evolution operator read4 8] hopping processes for the particles and diffusion-limited
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reactions for theB species, which we shall assume to be A ~ _
distributed randomly at the initial time=0. A[a,a,b,b]=f ddxf dt{a[d;a—D'V?a—D(V?a)b
As a final step, we employ coherent basis states to repre-
sent the matrix elemern2.8) by means of a path integral +Da(V?b)]-Da(V2a)bb+DaaV4(bb)
[6,17], and we then take the continuum limit. By absorbing 5 _
factors containing the lattice constant into the diffusion and +b[ab—DV2b+27\b?]+\b%%}. (3.1

reaction rates, we may compute averages with a dynamical

weight exp(-.A[,a,b,b]) that consist of contributions to HEre we have allowed for additional ordina#y diffusion
the bosonic field actiond which describe the ordinari processes with ratB'. This dynamic action is equivalent to
diffusion the following set of coupled Langevin equations:

) . da=D'V2a+D(V2a)b—Da(Vb)+¢, (3.2
AB[b,b]zf ddxf dtb(g;b—DV?b),  (2.10
b=DV2b—2\b%+ 7, (3.3
the purenth-order annihilation reactions where the fluctuating forces with zero mean are characterized
A A by the noise correlations
Ag[b,b]= —an dde dt(1-bMb", (2.1 L
(L(x,1)¢(x",t"))=0,

or offspring production processes, - - < o = R IR
(L0 n(x",t"))=D[V-a(x,t) Jb(x,t) s(x—x") 5(t—t")

AP[B,b]=amf ddxf dt(1-b™Mbb,  (2.12 —Da(x,H) VZ[b(x,t) 8(x—x") 8(t—t')],
(3.9
respectively. Finally thé\ diffusion, as induced by the cou-
pling to theB species, is given by the action (p(X,1) p(x',t"))=—2\b(X,t)28(X—X") S(t—t").
AA[é,a,B,b]=f ddxf dt é[ata—ﬁ(vza)ﬁb Taking averages, we may then identjfy(t)=(a(x,t)) and
pe(t) =(b(x,t)), as Eqs(3.2) and(3.3) obviously generalize

the mean-field rate equations for the local particle densities.
The reaction noise for thB species displays the character-
. . R istic negative correlationg‘imaginary noise”), which re-
Notice thatb(x,t)b(x,t) represents the local densitg(x,t)  flect the particleanticorrelations induced by the annihilation
(when appropriate ensemble averages are fakka A dif-  reaction[18,20,17,14 When there are n® particles left
fusion is thus mediated by the presenceBoparticles. We 1,y +)=0], the fluctuations cease, characteristic of an ab-
remark that apart from the continuum limit, the mapping of4hing inactive state. As anticipated, no noise contributions
the master equation onto the above field theory is exact angi<t for the pureA dynamics, but there appea-B noise
involves no further approximationsWe have omitted the 55 correlationgNotice that pure diffusion noise does not
boundary cqntr!butlons stemming from the initial condltlonsappear explicitly herg.
and the projection state here. Next, let us study what happens when thearticles are
subject to an additional random force that leads to ordinary
IIl. GENERAL CONSIDERATIONS diffusion, i.e., the termD’ in the action(3.1). Obviously,
one should expect that the induced diffusie is sup-
above is induced by the coupling to the reactBespecies pressgd in this.situat_ion, and in 'ghe long-time limit standard
only. When there are nB particles presenpg(x,t)=0, the diffusion prevails. This becomes indeed clear through simple
A dynamics obviously ceases. Indeed, it tumns out that therB°We' counting, introducing a momentum scalel e.,[x]
exists no noise term in the dynamic equation governingthe — X+ @nd measuring time scales [d§=« 88 appropri-
kinetics, which would formally appear as a contributioaa o for_d|ffus|ve dynamics. ThefD]=[D']=«" become
(or high,er bowers oﬁ) in the dynamic functional, In fact, dimensionless, and we infer the field scaling dimensions
any stochasticity emerges as a result of spatio-temporal flué al= [b] [a]=[b]=«" and [a]=[b]=«", as to be ex-
tuations for theB speciegessentially reaction noise herén pected ford-dimensional particle densities. The remaining
order to further elucidate this point, we may derive effectivecouplmgs(reacﬂon ratesacquire the scaling dimensions
Langevin-type equations for the local densitjgs and pg .

To this end, we need to perform the shifts1+a, b=1

+b, which take care of the annihilation operators appearing A positive scaling dimension means that the correspond-
in the projection statéV¥|, see Ref[17]. To be specific, let ing parameter is relevant in the renormalization-groR(®)

us consider the case & pair annihilation reactions. Omit- sense. E.g., the branching ratg carries the dimensions of a
ting temporal boundary terms describing the initial configu-“mass” term, and indeed represents the decisive control pa-
ration, the new action becomes rameter for BARW: In mean-field theory, the critical point

+Dav2(bb)]. (2.13

Clearly, the dynamic process for tleparticles as defined

[oml=r% [Na]=k>" ("D [D]=x"% (35
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must be ato,,=0, and is therefore described by the purewherek?=Dp?/ w. Thus, asw—0, the fluctuation correc-
annihilation model, while for any positive,, there will be  tions vanish(provided the integral is regularized in the ultra-
only an active phase characterized by exponential correlasiolet with an appropriate cutoffand the renormalized co-
tions [19] The annihilation rate is relevant fcnl<2/(n efficient BR in Eq. (3.7 approaches the original “bare”
—1) dimensions, and irrelevant fa>2/(n—1). Hence we . sian.

identify the upper critical dimension, below which fluctua- g is to be contrasted with the infrared-singular behav-

tions in fact dominate the asymptotic behavior, &&n) jor of, e.g. theB pair annihilation rate, for which an analo-
=2/(n—1) for nth-order annihilation processg®1,18§. gous procedure yield.8]

Thus, for n>3 fluctuations are not too important in any
physical dimensior=1. Y dp 1
Furthermore, we notice that the coupliBgis irrelevant Ar(Q, @)=\ 1+—f i 5 S|
i.e., compared to the other parameters in the theory its influ- | DJ @2m)? —iw/D+q%4+p?]
ence should become negligible in the asymptotic long-time,

long-wavelength limit. Evidentlypg(x,t) either vanishes [ N[ w\@ D2 gdg 1 !
(inactive phaseor approaches a constanf (active phase Ar(O@)=\| 1+ D'D J (2m)¢ ik
ast—oe. In the former case, normd diffusion, if present - NCY:)

(D'>0), will dominate; in the latter situation, the combined

quantity Dpg will effectively act as an ordinary diffusion Ford>d.(2)=2, again\g(0,0)=\ is just the original rate
constant, numerically renormalizirigy’. In any case, we see constant, resulting in the mean-field power lag(t)st™ 2.

that the ordinanyA diffusion process is not qualitatively af- However, ford<d.(2)=2, Ag(0,w)xw’~%? vanishes for
fected by the induced hopping through attractive coupling tdow frequencies. Inserting the corresponding effective time-
the B density and the associated noise cross correlationgiependent rateg(t)t~ 1" %2 into Eq.(3.3) leads to the cor-
Also whenD' =0, as in our original model, and in a system rect slower algebraic decay(t)ot™ 42,

with an initially finite number ofB particles,asymptotically In summary, theB process itself is, per definition of our
the A particles either remain localized or display standardmodel, not influenced by theA dynamics. In the
diffusion. In this respect, in numerical simulations the in-renormalization-group treatment, this is reflected by the fact

duced anomalous diffusion in which we are interested her?nat the couplingf) is irrelevant, and thus does not affect the

would appear as erossovelfeature in the long-time kinetics . . . . ~ .
and correspond to corrections to scaling to the Ieadin%:cmg'tlme b(_ahlafvlor.h;\et the. mdlij_ced. hopplgg reDels OIZ
asymptotic time dependence. In an infinite system, howeveéours.e ckr]uma orf.t Id Species 'F‘e"c\j\’, an mﬁSt eI e[:f)t
with initially finite B density the anomalous diffusion regime ven in the mean-field approximation. We may thus solve for
will persist indefinitely. f[he B k|net|ps f!rst, and then explore its mflgence on the
. ) ~ inducedA diffusion. Henceforth, we shall again set =0,

A corollary of these _otlefervatlons is that ”:je rﬁlegoes _as otherwise simple ordinar diffusion would ensue, with

not acquire any nontrivial frequency or time dependence | then irrelevant also for thé kinetics, and the entire cou-

the infrared. In the field theory language, we note that neithe ling of the A and B processes would disappear asvmoioti-
diffusive propagator for thé or B species can be renormal- piing PP S would disappe Symptoti

. N ] i ] . cally. In the following, we shall study th& kinetics, assum-
ized by the @bba) four-point vertex in the unshifted action g3 spatially homogeneous but time-dependent distribution

(2.13, or equivalently, the three- and four-point vertices in of B particles, which leads us to a mean-field description.
the shifted action(3.1). Consequently, the renormalization

for the vertex functiond ;5. OF I'35pa @and I'3,,, respec-
tively, can be determined tall orders in the perturbation

expansion(with respect td)) by means of a Bethe-Salpeter A. Annihilation kinetics

equation, or equivalently, a geometric series of loops con- Let us assume we can neglect spatial fluctuations foBthe
tain?ng just theA andB propagator. This leads to the renor- species entirely, and ignore the reaction noise. For the
malized wave-vector- and frequency-dependent coupling s qrder annihilation processes, we saw that this as at least
a qualitatively correct description fat>d.(n)=2/(n—1),
i.e., ford>2 in the case of pair annihilationd>1 for the
. third-order process B—J, and in any physical dimension
3.6 for n>3. The evolution equation can either be obtained di-
' rectly from the nonequilibrium operatdry in Eq. (2.3) and
. the equation of motiori2.9), or from solving for the station-
whereq andw denote the momentum and frequency transfery ity condition 5.4/5b=0 for the actiond=Ag+Ag, Egs.
between theA and B particles. We may now séD’'=0 (2,10 and (2.1, settingD=0. (Notice thats.A/sb=0 is

IV. MEAN-FIELD EVOLUTION EQUATIONS

-1

q2+'f>f dp  p2(q—p)2-p?]

Dr(q,w)=D
RlGe) (2m? —iw+D’p?*+Dp?

again, and investigate the long-wavelength ligpit-0, always solved byo=1.) Either procedure results in the ob-
vious mean-field rate equation
. _ 'D dr2 ddk k2 -1
—Dr(0,0) =D|1+= 2) f—— dpg(t)=—nNkypp(t)", 4.1
a9 a0 D\D (2m)9 —i+Kk?

(3.7 which is readily integrated fon>1,
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_ pe(0)t7"
T =N,

ps(0)
(1+t/7)HO=D

pe(t)= (4.2

i.e., fort> r the B density decays algebraicalyt ="~ 1) in
this approximation, while of course for=1

p(t)=pg(0)e~ ", 4.3
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with a positive exponen® =2/(n—2) indicating subdiffu-
sive behavior. In the limith—c we have® —0, and con-
ventional diffusion is recovered. The reason is, of course,
that for largen the depleting reactions become very unlikely,
asn particles are required to meet at the same lattice site.
Thus, low-ordeB species reactions are much more effective
in slowing down theA diffusion. The time scale for the
crossover to the pure algebraic decay of Biparticle den-

In the same manner, we may obtain the evolution equasity and subsequently for the anomaldusdiffusion is given

tion for the A species, or just consider E(B.2) for D'=0

by 7¢<pg(0)!~"/\,. The crossover to the asymptotic slow

and vanishing noise. In the spirit of mean-field theory, wedynamics is fast for large initial densities and reaction rates.

assume a homogeneoBsdensity, and obtain

aipa(X,1)=Dpg(t)V2pa(X,1). (4.4)

The above analysis should be qualitatively correctrfor
>3, as the corresponding critical dimensidg(n)<1. For
n=2, i.e.,B pair annihilation processes th<2 dimensions,
we know that at long timesanticorrelations develop

Again, this equation can be solved exactly, considering §20,18,17: Initially close-by particles disappear quickly, and

6-like density distribution for thé\ species at the initial time

t=0. As in this mean-field approach tlpg(t) is assumed to

be spatially uniform, the\ species will be Gaussian distrib-

uted in space, just like in ordinary diffusion,

) 1 d/2 )—(>2

However, theB decay(or lattice depletiopwill be reflected
in the anomalous time dependence of the widthean-
square displacementA straightforward brief calculation
yields

N - t
(xa(1))=2D fOpBa’)dt'. (4.6

For n=1, i.e., the simple exponential dec#4}.3), the
result is

only widely separated ones survive. This effective “repul-
sion” should result in a roughly uniform spati8l distribu-
tion even for a clustered initial configuration. Given that the
coupling coefficienD itself does not renormalize, we there-
fore expect that our decoupling assumption leading to Eq.
(4.4) should represent a fair approximation, provided the cor-
rect time dependence of thiedensity is inserted. Fail<2,

the asymptotic result is

pa(t)oct™ 92, (4.1

see Ref[18] and also Sec. Il following Eq(3.8), whence

(X2(t))=2Dt!~ 92 (4.12
with an appropriate effective ratgcxﬁ/(l—d/Z). In low
dimensions, this algebraic subdiffusive behavior with
=2d/(2—d) replaces the logarithmic lay4.8). At the criti-
cal dimensiongl.(2)=2, one finds the typical logarithmic

. 2Dpg(0) - correctiong 18]
(xi(t))=)\—(1—e My, (4.7)
1 pe(t)<t tint, (4.13
Initially (A,t<<1) one finds normal diffusion with effective implying
diffusion constanD =D pg(0), but atlong times the mean-
square displacement approaches a constant, andAthe ()?i(t))ocﬁ(lnt)z (4.14

particles remain localized in a region of volume

o (X4 (t—0))92= (2D pg(0)/r;)¥2. Given that this simple which also describes slower kinetics than given by the mean-
process is characterized by short-range correlations in spadield result(4.8). For the case oh=3 at its critical dimen-
and time only, we do not expect any considerable modificasiond.(3)=1,
tion through fluctuation effects.

In the pair annihilation case&=2, one finds

pe(t)(t™tInt)*2, (4.19

s ~ t and one would therefore expect the leading time dependence
(Xa(t))=2Dpg(0)In 1+; , (4.8
(Xa(t))cD(tInt)*2 (4.16
while the mean-field result fan>2 reads ) ) ) o
i.e., essentially a square-root power law with logarithmic
- 2800 n—1 L t)(n-2/0-1) L corrections.
(Xa(t))=2Dpg( )n—ZT +; -
(4.9 B. BARW kinetics

In the asymptotic regime> r, this implies anomalous diffu-

| | We now extend théB dynamics and include branching
sion according to

processes of the forB— (m+ 1)B with ratec,,, described
by Egs.(2.4) or (2.12. The mean-field rate equatigd.l),

(X5(1))oct?(210) with n=2, is then replaced by

(4.10
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dipa(t)=—n\pa(t)"+mompg(t), (4.17  from uniform at the critical point, and is instead character-
ized by the appearance fractal density clusters. While we
would still expect subdiffusive behavior for th& species
with ®>0, this exponent will likely be influenced by the
power-law correlations in the criticdd density. In the case

B (mgm> 1U(n—1) of evenm, for which theB particle number parity is locally

which has two stationary solutionss=0 (inactive phase
and

pPg= (4.18  conserved under the reactions, a nontrivial transition with
a.>0 is possible only fod<d.,~4/3 dimensions. The in-
) active phase is then given by the pure pair annihilation
(active phasg For any >0, the latter turns out to be theory, and consequently E¢4.12 should provide a fair

stable, i.e., BARW are always in the active phase in thejescription for the ensuing anomalodgliffusion. The criti-
mean-field approximation. The explicit solution of B4.18 5| pehavior is governed by a different parity-conserving

furthermore shows that the asymptotic dengify is expo- universality class, withw<<1/2. In this instance, we again

N\,

nentially approached, expect the above mean-field description to be rather inaccu-
. rate.
PB
)= , 4.19
palt) [1+C e (N~Dmopt (n=1) 419 V. CONCLUSIONS
whereC=[pg/pg(0)]""*—1. Again, Eq.(4.4) is solved by We have studied a mechanism to induce anomalous dif-

the Gaussian distribution4.5) with mean-square displace- fusion. Whenever an active particle of thespecies performs

ment (4.6). The ensuing integral is readily calculated for @ random walk on a lattice, it may visit a certain lattice site
some special cases, e.g., for 2 only provided this site is already occupied by at least Bne

particle. The random walk is prolongated when Bgar-

- - . ot ticles react with each other in such a manner thatBspe-
(Xa(1))=2Dpg| t+———In(1+Ce ™)}, (420  cjes density is decreasing. If that decay is exponeiiait-
m order reactiojy then after a short-time intervéjiven by the
inverse decay rajehe B species has disappeared and a fur-
whereas fom=3 ther visit of anA particle at that site is impossible. As a
EPOBcl JIFCe T4 1 consequence thé species, after some initial mixing, re-

(4.21) mains localized. When th8 species undergo reactions of
higher order, requiring at least tw® particles to meet at a
lattice site, an algebraic decay ensues that allows hopping
processes for thé species to occur for a much longer pe-
riod. However, the random walk process is slowed down
considerably as thB density diminishes, resulting in a much
shorter mean-square displacemenfgfarticles as compared
with conventional diffusion. The emerging anomalous diffu-
sion is governed by power laws or logarithmic behavior that
The properties of the active phase with an asymptoticallfcan(approximately be related to the asymptotic time behav-
homogeneou8 density are not much influenced by fluctua- jor of the reactingB particle density. In this instance one
tions, and hence E@4.22 should aptly describe the ensuing may view this process as resembling diffusion on a dynami-
A kinetics even beyond mean-field theory. cal fractal. Only when at long times tH& density remains
For the possible existence of an inactive phase, and thgnite and nearly homogeneous, conventioAafliffusion is
characterization of the ensuing critical behavior, fluctuationrecovered. This situation corresponds to diffusion with dy-
effects are, however, of utmost importance fis£2, and it  namical disorder, where in the long-time limit ti& par-
turns out that the cases of odd and even offspring number ticles, with largely decayed fluctuations, merely resemble a
need to be distinguished. For odd aside from all lower- quasistatic inhomogeneous background for fdinetics.
order branchings, first-order decay proceddes are gen-  The consistent mathematical treatment of diffusion on a
erated, and become sufficiently efficient to shift the criticalstatic fractal, as well as induced diffusion processes on criti-
point too >0 for d<2 dimensions. The emerging transition cal (isotropic or directeflpercolation clusters or near BARW
at .>0 can be shown to be in the generic directed-critical points remains an open problem that requires more
percolation(DP) universality clas§19]. The inactive phase sophisticated analysis beyond the largely mean-field ap-
is then governed by exponentildensity decay, whereupon proach presented here.
the A species will become localized according to E4.7).

(A(0)= g In

Ji+Ce Tm—1

In general, asymptotically normal diffusion with effective
diffusion coefficientD pg; is recovered in the active state,

(X3(1))=2Dpgt. (4.22

At the critical point itself, theB species density decays ac- ACKNOWLEDGMENTS
cording to a power Iava(i,t)~t*“, with a= B/zv, given
by DP critical exponents inl=1 andd=2, respectively. We acknowledge fruitful discussions with Hans-Karl

This would sugges(ﬁ,i(t))octlw; yet the B density is far Janssen, Beate Schmittmann, and Olaf Stenull.
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